Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 170: 179-186, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34968646

RESUMO

Glioblastomas have been historically difficult to treat with poor long-term survival. With novel strategies focused on targeting hypoxia-inducible factor (HIF) regulatory pathways, recent evidence has shown that Acriflavine (ACF) can effectively target glioma invasiveness and recurrence. However, local delivery of ACF and its combinatory effects with Temozolomide (TMZ) and radiation therapy (XRT) have not yet been optimized. In this study we test a novel polymeric matrix that can gradually release ACF at the tumor bed site in combination with systemic TMZ and XRT. In vitro cytotoxicity assays of ACF in combination with TMZ and XRT were performed on rodent and human cell lines with CCK-8 and flow cytometry. In vitro drug release was measured and intracranial safety was assessed in tumor-free animals. Finally, efficacy was assessed in an intracranial gliosarcoma model and combination therapy with TMZ and XRT evaluated. Combination therapy of ACF, TMZ, and XRT was able to reduce cell viability and induce apoptosis in glioma cells. In vitro and in vivo release of ACF was measured in benchtop and animal models. Efficacy was established in an in vivo gliosarcoma model in which intracranial ACF (p < 0.01) significantly improved median survival and the combination therapy of ACF, TMZ and XRT (p < 0.01) significantly improved median survival and led to long-term survival (LTS). We provide evidence that ACF, combined with TMZ and XRT, led to LTS in an intracranial model of rat gliosarcoma. These findings, in combination with the use of a novel polymeric matrix that allows more gradual drug delivery, constitute a first step in the translation of this novel strategy to human use.


Assuntos
Acriflavina/administração & dosagem , Neoplasias Encefálicas/terapia , Implantes de Medicamento , Glioma/terapia , Dosagem Radioterapêutica , Temozolomida/administração & dosagem , Implantes Absorvíveis , Acriflavina/farmacologia , Animais , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Terapia Combinada , Polímeros/química , Ratos , Ratos Endogâmicos F344 , Taxa de Sobrevida , Temozolomida/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Neurosurg Pediatr ; 28(6): 734-743, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34479190

RESUMO

OBJECTIVE: Atypical teratoid rhabdoid tumors (ATRTs) are aggressive pediatric brain tumors with no current standard of care and an estimated median patient survival of 12 to 18 months. Previous genetic analyses have implicated cyclin D1 and enhancer of zeste homolog 2 (EZH2), a histone methyltransferase that is implicated in many cancers, as key drivers of tumorigenicity in ATRTs. Since the effects of EZH2 and cyclin D1 are facilitated by a host of cyclin-dependent kinases (CDKs), the authors sought to investigate the potential therapeutic effects of targeting CDKs in ATRTs with the multi-CDK inhibitor, TG02. METHODS: Human ATRT cell lines BT12, BT37, CHLA05, and CHLA06 were selected for investigation. The effects of TG02 on cell viability, proliferation, clonogenicity, and apoptosis were assessed via Cell Counting Kit-8 assays, cell counting, clonogenic assays, and flow cytometry, respectively. Similar methods were used to determine the effects of TG02 combined with radiation therapy (RT) or cisplatin. Synergism indices for TG02-cisplatin combination therapy were calculated using CompuSyn software. RESULTS: TG02 was observed to significantly impair ATRT cell growth in vitro by limiting cell proliferation and clonogenicity, and by inducing apoptosis. TG02 inhibited ATRT cell proliferation and decreased cell viability in a dose-dependent manner with nanomolar half maximal effective concentration (EC50) values (BT12, 207.0 nM; BT37, 127.8 nM; CHLA05, 29.7 nM; CHLA06, 18.7 nM). TG02 (150 nM) dramatically increased the proportion of apoptotic ATRT cells 72 hours posttreatment (TG02 8.50% vs control 1.52% apoptotic cells in BT12, p < 0.0001; TG02 70.07% vs control 15.36%, p < 0.0001). Combination therapy studies revealed that TG02 acted as a potent radiosensitizer in ATRT cells (BT12 surviving fraction, RT 51.2% vs RT + TG02 21.7%). Finally, CompuSyn analysis demonstrated that TG02 acted synergistically with cisplatin against ATRT cells at virtually all therapeutic doses. These findings were consistent in cell lines that cover all three molecular subgroups of ATRTs. CONCLUSIONS: The results of this investigation have established that TG02 is an effective therapeutic against ATRTs in vitro. Given the lack of standard therapy for ATRTs, these findings help fill an unmet need and support further study of TG02 as a potential therapeutic option for patients with this deadly disease.

3.
J Neurosurg Pediatr ; 27(4): 482-488, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33545678

RESUMO

OBJECTIVE: Medulloblastoma, the most common pediatric brain malignancy, has Sonic Hedgehog (SHH) and group 3 (Myc driven) subtypes that are associated with the activity of eukaryotic initiation factor 4E (eIF4E), a critical mediator of translation, and enhancer of zeste homolog 2 (EZH2), a histone methyltransferase and master regulator of transcription. Recent drug repurposing efforts in multiple solid and hematologic malignancies have demonstrated that eIF4E and EZH2 are both pharmacologically inhibited by the FDA-approved antiviral drug ribavirin. Given the molecular overlap between medulloblastoma biology and known ribavirin activity, the authors investigated the preclinical efficacy of repurposing ribavirin as a targeted therapeutic in cell and animal models of medulloblastoma. METHODS: Multiple in vitro assays were performed using human ONS-76 (a primitive SHH model) and D425 (an aggressive group 3 model) cells. The impacts of ribavirin on cellular growth, death, migration, and invasion were quantified using proliferation and Cell Counting Kit-8 (CCK-8) assays, flow cytometry with annexin V (AnnV) staining, scratch wound assays, and Matrigel invasion chambers, respectively. Survival following daily ribavirin treatment (100 mg/kg) was assessed in vivo in immunodeficient mice intracranially implanted with D425 cells. RESULTS: Compared to controls, ribavirin treatment led to a significant reduction in medulloblastoma cell growth (ONS-76 proliferation assay, p = 0.0001; D425 CCK-8 assay, p < 0.0001) and a significant increase in cell death (flow cytometry for AnnV, ONS-76, p = 0.0010; D425, p = 0.0284). In ONS-76 cells, compared to controls, ribavirin significantly decreased cell migration and invasion (Matrigel invasion chamber assay, p = 0.0012). In vivo, ribavirin significantly extended survival in an aggressive group 3 medulloblastoma mouse model compared to vehicle-treated controls (p = 0.0004). CONCLUSIONS: The authors demonstrate that ribavirin, a clinically used drug known to inhibit eIF4E and EZH2, has significant antitumor effects in multiple preclinical models of medulloblastoma, including an aggressive group 3 animal model. Ribavirin may represent a promising targeted therapeutic in medulloblastoma.


Assuntos
Neoplasias Cerebelares/patologia , Meduloblastoma/patologia , Ribavirina/farmacologia , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Fator de Iniciação 4E em Eucariotos/efeitos dos fármacos , Fator de Iniciação 4E em Eucariotos/metabolismo , Proteínas Hedgehog/genética , Humanos , Meduloblastoma/genética , Meduloblastoma/metabolismo , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Mol Cancer Ther ; 19(9): 1797-1808, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32606016

RESUMO

Nasopharyngeal carcinoma (NPC) is a squamous cell carcinoma with a proclivity for systemic dissemination, leading many patients to present with advanced stage disease and fail available treatments. There is a notable lack of targeted therapies for NPC, despite working knowledge of multiple proteins with integral roles in NPC cancer biology. These proteins include EZH2, Snail, eIF4E, and IMPDH, which are all overexpressed in NPC and correlated with poor prognosis. These proteins are known to be modulated by ribavirin, an FDA-approved hepatitis C antiviral that has recently been repurposed as a promising therapeutic in several solid and hematologic malignancies. Here, we investigated the potential of ribavirin as a targeted anticancer agent in five human NPC cell lines. Using cellular growth assays, flow cytometry, BrdU cell proliferation assays, scratch wound assays, and invasion assays, we show in vitro that ribavirin decreases NPC cellular proliferation, migration, and invasion and promotes cell-cycle arrest and cell death. Modulation of EZH2, Snail, eIF4E, IMPDH, mTOR, and cyclin D1 were observed in Western blots and enzymatic activity assays in response to ribavirin treatment. As monotherapy, ribavirin reduced flank tumor growth in multiple NPC xenograft models in vivo Most importantly, we demonstrate that ribavirin enhanced the effects of radiotherapy, a central component of NPC treatment, both in vitro and in vivo Our work suggests that NPC responds to ribavirin-mediated EZH2, Snail, eIF4E, IMPDH, and mTOR changes and positions ribavirin for clinical evaluation as a potential addition to our NPC treatment armamentarium.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Carcinoma Nasofaríngeo/terapia , Neoplasias Nasofaríngeas/terapia , Radiossensibilizantes/administração & dosagem , Ribavirina/administração & dosagem , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Quimiorradioterapia , Reposicionamento de Medicamentos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , IMP Desidrogenase/metabolismo , Camundongos , Terapia de Alvo Molecular , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Radiossensibilizantes/farmacologia , Ribavirina/farmacologia , Fatores de Transcrição da Família Snail/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Neurosurgery ; 87(5): 1046-1054, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32521017

RESUMO

BACKGROUND: Hydrocephalus is managed by surgically implanting flow-diversion technologies such as differential pressure valves and antisiphoning devices; however, such hardware is prone to failure. Extensive research has tested them in flow-controlled settings using saline or de-aerated water, yet little has been done to validate their performance in a setting recreating physiologically relevant parameters, including intracranial pressures, cerebrospinal fluid (CSF) protein content, and body position. OBJECTIVE: To more accurately chart the episodic drainage characteristics of flow-diversion technology. A gravity-driven benchtop model of flow was designed and tested continuously during weeks-long trials. METHODS: Using a hydrostatic pressure gradient as the sole driving force, interval flow rates of 6 valves were examined in parallel with various fluids. Daily trials in the upright and supine positions were run with fluid output collected from distal catheters placed at alternating heights for extended intervals. RESULTS: Significant variability in flow rates was observed, both within specific individual valves across different trials and among multiple valves of the same type. These intervalve and intravalve variabilities were greatest during supine trials and with increased protein. None of the valves showed evidence of overt obstruction during 30 d of exposure to CSF containing 5 g/L protein. CONCLUSION: Day-to-day variability of ball-in-cone differential pressure shunt valves may increase overdrainage risk. Narrow-lumen high-resistance flow control devices as tested here under similar conditions appear to achieve more consistent flow rates, suggesting their use may be advantageous, and did not demonstrate any blockage or trend of decreasing flow over the 3 wk of chronic use.


Assuntos
Pressão do Líquido Cefalorraquidiano/fisiologia , Derivações do Líquido Cefalorraquidiano/instrumentação , Desenho de Equipamento , Modelos Cardiovasculares , Humanos , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/fisiopatologia , Hidrocefalia/cirurgia , Pressão Intracraniana/fisiologia
6.
Mol Cancer Ther ; 18(7): 1185-1194, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31263027

RESUMO

The growing cost of medical care worldwide, particularly in oncology, has incentivized researchers and physicians to repurpose clinically used drugs to alleviate the financial burden of drug development and offer potential new therapeutics. Recent works have demonstrated anticancer properties of the FDA-approved drug ribavirin, a synthetic guanosine analogue and antiviral molecule used over the past four decades for the treatment of hepatitis C. The efficacy of ribavirin in cancer has been explored through several preclinical models and ongoing clinical trials in multiple cancers, including acute myeloid leukemia, oropharyngeal squamous cell carcinoma, and metastatic breast cancer. In this review, we summarize the role of ribavirin as an antiviral medication and focus our attention on its recent use as an antitumoral agent. We highlight current knowledge of the potential use and mechanisms of action of ribavirin in cancer. Because current therapeutics for patients with cancer still fail to cure, introducing new forms of treatment is essential. Converging evidence suggests that ribavirin represents a promising addition to a generation of newly repurposed safe and effective anticancer agents.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Ribavirina/uso terapêutico , Antineoplásicos/farmacologia , Humanos , Ribavirina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...